Algebraic Structure of the Canonical
Non-classical Hopf Algebra

Robert G. Underwood
Department of Mathematics and Computer Science
Auburn University at Montgomery
Montgomery, Alabama

I
M
AUBURN

June 12, 2019



1. Introduction

Let K be a field containing Q, and let L/K be a Galois extension
with non-abelian group G.

Then L/K admits both a classical and canonical non-classical
Hopf-Galois structure via the Hopf algebras K[G] and H,,

respectively.

By an (unpublished) theorem of C. Greither, K[G] = H, as
K-algebras.

Various proofs of Greither's result have been found in certain cases.



For instance, S. Taylor and P. J. Truman [TT19] have shown that
K[G] = H\ when G is the quaternion group Q.

U. has shown that K[G] = H,, for the cases G = D4 and G = Ds.

In this talk we review these results; we examine the D3 case in
detail to find explicit formulas for the matrix units in H).



2. Hopf Galois theory
We review some of the basic notions of Hopf-Galois theory.
Let L be a finite extension of a field K.

Let H be a finite dimensional, cocommutative K-Hopf algebra with
comultiplication A : H - H®g H, counit e : H — K, and
coinverse S: H — H.

Suppose there is a K-linear action of H on L that satisfies

h(xy) => (hay x)(h2)-y)
(h)
h-1=¢e(h)1

forall he H, x,y € L, where A(h) = Z(h) h(1) @ h2y is Sweedler
notation.



Suppose also, that the K-linear map
J:L®k H— Endk(L), j(x® h)(y) =x(h-y)

is an isomorphism of vector spaces over K. Then H together with
this action provides a Hopf-Galois structure on L/K.

Example 2.1. Suppose L/K is Galois with Galois group G. Let
H = K[G] be the group algebra, which is a Hopf algebra via
Alg)=g®g, c(g) =1, 0(g) =g}, for all g € G. The action

(D re8) - x =" relg(x))

provides the “usual” Hopf-Galois structure on L/K which we call
the classical Hopf-Galois structure.



In the separable case C. Greither and B. Pareigis [GP87] have
provided a complete classification of such structures.

Let L/K be separable with normal closure E. Let G = Gal(E/K),
G' = Gal(E/L), and X = G/G’. Denote by Perm(X) the group of
permutations of X.

A subgroup N < Perm(X) is regular if |[N| = |X| and
n[xG'] # xG' for all n # 1y, xG' € X.

Let A : G — Perm(X), A(g)(xG’) = gxG’, denote the left
translation map. A subgroup N < Perm(X) is normalized by
A(G) < Perm(X) if A(G) is contained in the normalizer of N in
Perm(X).



Theorem 2.2. (Greither-Pareigis) Let L/K be a finite separable
extension. There is a one-to-one correspondence between Hopf
Galois structures on L/K and regular subgroups of Perm(X) that
are normalized by \(G).

One direction of this correspondence works by Galois descent: Let
N be a regular subgroup normalized by A(G). Then G acts on the
group algebra E[N] through the Galois action on E and
conjugation by A\(G) on N, i.e,,

g(xn) = g(x)(Mg)nA(g")).g € G, x€ E, neN.

For simplicity, we will denote the conjugation action of
A(g) € A(G) onn € N by &n.

We then define

H = (E[N]))® = {x € E[N] : g(x)=x,Vg € G}.



The action of H on L/K is thus

(Z rn") x =) Le] (%),

neN neN

see [Ch1l, Proposition 1].

The fixed ring H is an n-dimensional K-Hopf algebra, n = [L: K],
and L/K has a Hopf Galois structure via H [GP87, p. 248, proof
of 3.1 (b)= (a)], [Ch0O, Theorem 6.8, pp. 52-54].

By [GP87, p. 249, proof of 3.1, (a) = (b)],

as E-Hopf algebras, that is, H is an E-form of K[N].



Theorem 2.2 can be applied to the case where L/K is Galois with
group G (thus, E =L, G'=1¢, G/G' = G). In this case the
Hopf Galois structures on L/K correspond to regular subgroups of
Perm(G) normalized by A(G), where A : G — Perm(G),

A(g)(h) = gh, is the left regular representation.



Example 2.3. Suppose L/K is a Galois extension, G = Gal(L/K).
Let p: G — Perm(G) be the right regular representation defined
as p(g)(h) = hg! for g,h € G. Then p(G) is a regular subgroup
normalized by A\(G), since A(g)p(h)A(g~1) = p(h) for all g, h € G;
N corresponds to a Hopf-Galois structure with K-Hopf algebra

H = L[p(G)]® = K[G], the usual group ring Hopf algebra with its
usual action on L. Consequently, p(G) corresponds to the classical
Hopf Galois structure.

Example 2.4. Again, suppose L/K is Galois with group G. Let

N = A(G). Then N is a regular subgroup of Perm(G) which is
normalized by A(G), and N = p(G) if and only if N abelian. We
denote the corresponding Hopf algebra by H,. If G is non-abelian,
then A(G) corresponds to the canonical non-classical Hopf-Galois
structure.



3. Isomorphism Classes

It is of interest to determine how K[G] and H, fall into K-Hopf
algebra and K-algebra isomorphism classes. We have:

Theorem 3.1. (Koch, Kohl, Truman, U. [KKTU19]) Assume that
G is non-abelian. Then Hy % K[G]| as K-Hopf algebras.

Proof. Over L, K[G] and H) are isomorphic to L[G] as Hopf
algebras, thus their duals K[G]* and H are finite dimensional as
algebras over K and separable (as defined in [Wa79, 6.4, page 47]).
Using the classification of such K-algebras [Wa79, 6.4, Theorem|,
we conclude that K[G]* and Hj are not isomorphic as K-Hopf
algebras, and so neither are K[G] and H,. In fact, by [WaT79, 6.3,
Theorem], K[G]* and Hj are not isomorphic as K-algebras, and
consequently, K[G] and H) are not isomorphic as K-coalgebras. [



Here is an another proof for Theorem 3.1.

Proof. By [Ko15, Corollary 1.3], the group-like elements of H) are
computed as G(Hy) = A(G) N p(G), which cannot be all of p(G)
since G is non-abelian. Thus Hy 2 K[G] as K-Hopf algebras. [

For the moment, we fix G, and the base field K, and allow L/K to
vary.



Proposition 3.2. Let L/K and L'/K be Galois extensions with
non-abelian group G with L % L'. Let Hy\ and Hy be the
corresponding canonical non-classical Hopf algebras. Let E be the
compositum of L, L', with Galois group I'. Assume that

EZ) ¢ LN L', where Z(T) denotes the center of T. Then

H) 22 Hy» as K-Hopf algebras.

Proof. By way of contradiction, assume that Hy = H), as K-Hopf
algebras. Then

L@k Hy 2 LIN(G)] = L[G] = L@k Hy

as L-Hopf algebras. Thus L ®x Hy has exactly |G| group-like
elements.



Now tensoring over L with E yields
E®; L[G] = E®; (L®k Hy) = E[G].
So, the group-likes in L ®x Hys are the group elements in G. This

is a contradiction since EZ(1) ,Q_ LNnL.
O

We next consider K-algebra structure.



Theorem 3.3. (Greither) H\ = K[G] as K-algebras.
Proof. (Sketch.)

Step 1. Obtain the Wedderburn-Artin decomposition of K[G], thus:
K[G] =2 A1 x Ay X -+ X A,
where A; = Mat, (E;) for division rings E;.

Step 2. Show that the action of G on L[G] restricts to an action
on the components L ® A; of L[G] = L ®k K[G], and hence each
component L ® A; descends to a component S; in the
Wedderburn-Artin decomposition of Hy; (supressing subscripts) S
is an L-form of A.



Step 3. L-forms of A are classified by the pointed set
H(G,Aut(L ®x A)). Let [f] be the class corresponding to the
class of S.

Step 4. There exists a map in cohomology
V: HY(G, GLy(L @k E)) — HY(G,Inn(L @k A))

with [f] € HY(G,Inn(L @k A)). Moreover, there exists a class
[] € HY(G, GLA(L ®k E)) with W([q]) = [f].

Step 5. By Hilbert's Theorem 90 (or its generalization)
HY(G, GL,(L ®k E)) is trivial, hence [f] is trivial, so S = A as
K-algebras, thus Hy = K[G] as K-algebras. O

For details in the case G = D,, p an odd prime, see [KKTU19,
Theorem 4].



Recently, P. J. Truman has given the following generalization.

Theorem 3.4. (Truman) Let N be given and let N be the
centralizer of N in Perm(G). Then (L[N])® = (L[N'])® as
K-algebras.



4. Greither's Theorem for G = Qs

Let

4 4

Q=(o,7:0"=1"=1,02=72

0T =T0°)
denote the quaternion group. Let L/K be a Galois extension with
group Qg.

Then L/K has a unique biquadratic extension K(a, 5) with
o’ =ac K, 2= b € K corresponding to the unique subgroup

(o) of order 2.

For x,y € K*, let (x, y)k denote the quaternion algebra with
K-basis {1, u, v, w}, satisfying the relations w=x, v:=y,
uv = w, v = —w.



We have the following result due to S. Taylor and P. J. Truman
[NYJM19]

Proposition 4.1. (Taylor and Truman)
KIQs] 2 K x Kx K x K x (-1,-1),

and
Hy=KxKxKxK x(—a,—b)k.

What is not immediate is whether (—1,—1)x = (—a, —b)k as
K-algebras.



Proposition 4.2. (Taylor and Truman) (=1, —1)x = (—a,—b)k
as K-algebras.

Consequently, Hy = K[Qg] as K-algebras.

In the decomposition

KIQs] 2= K x Kx K x K x (—1,-1)g,
the 4-dimensional K-algebra (—1, —1)x could either be a division
ring or isomorphic to Mata(K).
Proposition 4.3. If K is real, then (—1,—1)k is a division ring.
Proof. Let g = a+ bu+ cv + dw € (—=1,—1)k for a,b,c,d € K
not all 0. Since K is real, one can compute the inverse

gt =(a—bu—cv—dw)/(a®+ b>+ 2+ d?).



Proposition 4.4. If K contains i then (—1,—1)x = Maty(K).

Proof. The map ¢ : (=1, —1)x — Maty(K) defined as

Lo (YO (i (0 (0
0 1) "7 \o i)V 21 0)"T i o

is an isomorphism of K-algebras. See [Rol17, Example C-2.114].



5. Greither's Theorem for G = D,

Our methods here share similarities with the Qg case.

Let

Dy=(o,7:0"=7%=0r07=1)

denote the dihedral group of order 8. Let L/K be a Galois
extension with group Dj.

Then L/K has a unique biquadratic extension K(«, ) with
a® =a € K, 2 = b € K corresponding to the subgroup (o?) of
order 2.

We have L") = K(a, 8) with L*7) = K(B), L = K(a) and
L7 = K(ap).



The lattice of fixed fields is:




By [CR81, Example 7.39]

K[Ds] = K x K x K x K x Maty(K).

And by character theory,

Hy 2 K x K x K x K x Mat,(D)

where 1 < n <2 and D is some division algebra over K.

We proceed to compute the component Mat,(D). (We intend to
show that Mat,(D) = Maty(K).)

We begin by characterizing the elements in H).



Proposition 5.1. Let L/K be a Galois extension with group Dj.
Then H)y consists of elements of the form

h = ag+a10+ax0° +7(a1)o> 4 boT + byro +a(bo)To? + 0 (b1 )T03,
where ag,a> € K, a1 € L{o), by € L<U2’T>, and by € L{o?To).
Proof. Following [Ch00, Example 6.12], let

X = ag + a0 + ap0? + az0° + byt + by70 + byr0? + 3703

be an element of L[D4] for some ag, a1, az, as, bo, b1, bz, b3 € L.
Then the elements in H) are precisely those x for which 7(x) = x
and o(x) = x. O



Write by = bo1 + bo23, a1 = ai1,1 + a1 20, and by = by 1 + b8
for some bo 1, bo 2, a1,1,a1,2, b1,1, b12 € K.

Then O'(bo) = bo71 — b072,8, U(bl) = b171 — b172045, and
T(al) = 3171 — 31’204.



Let M be the subalgebra of Hy corresponding to the component
Mat,(D) in the decomposition of H.

Proposition 5.2. M has K-basis

{(1- 02)/2, alo — 03), B(r — 702), af(ro — 7'03)}.

Proof. The idempotents corresponding to the 4 copies of K in the
decomposition of Hy are ¢ = %ZSGD4 xi(s™)s, 1 < i < 4, where
X; are the characters of the 4 1-dimensional irreducible
representations of Dy (each e; is in LDy and is fixed by Ds, hence
€ € HA).



The idempotent corresponding to the component Mat,(D) is

2

e—l—Ze,—lia.

By Proposition 5.1, a typical element of Hy appears as

h = ag+a10+ax0° +7(a1)0> 4 boT + byro + 0 (bo)T0* + 0 (b1 )T03,

where ag, a2 € K, a1 € L{9), by € L9*7) and by € L{o*70%).

And so, a typical element of M is



2
+ o(bo)T0? + o(b1)70?)

1—o02 3 5
= q 5 +3172OJ(0'—0' )+bo’25(T—TJ)

+ bipafB(to — 703),

1— o2
eh = ( ) (a0 + a0 + a0? + 7(a1)0> + boT + bi7o

for q,a1,2, bo727 b172 € K. Thus
{(1-0%)/2,a(0 = 0%), (1 — 70%),af(10 — 70°)}
is a K-basis for M.



Let 1 =(1-0?%)/2, X =a(oc —03), Y = B(1 — 70?), and
Z = af(to — 103).

Then we have the multiplication table:

|1 X Y 4
1)1 X Y V4
X | X —4a? 27  2a2Y
Y|Y 2Z 432 232X
Z|Z =202 =2B°X 402p3?

Thus M is isomorphic as a K-algebra to the quaternion algebra
(—4a,4b)K with the quaternionic basis {1, X, Y,—-2Z7}.



Proposition 5.3. M = (—4a,4b)k = (b, ba)k.

Proof. By [Co19, (4), (1), (2)],

M = (—4a,4b)k = (—a, b)k = (b, —a)k = (b, ba)k-

Proposition 5.4. M = (b, ba)k = Maty(K).

Proof. As in [Le01], L/K is a solution to the “Galois theoretical
embedding problem” given by K(a, 3)/K and the short exact

sequence
1= (0% =Dy — GxC—1.



So by [Le01, 0.4], ba is a norm in K(3)/K, that is, there exist
s,t € K so that

s2 — bt? = ba. (1)

Thus by [Col9, Theorem 4.16], M = (b, ba)x = Mat>(K). O

Alternative ending of proof. From (1), we have

s> = ba+ bt?, or
as® = a°b + abt?.

Then
sX+aY +tZ

is a non-trivial nilpotent of index 2 in Hy, thus M = Mat,(K).
g



Our conclusion is that

Hy = K[Ds] =2 K x K x K x K x Maty(K).



6. Greither's Theorem for G = D3

Our method now differs from the Qg and D, cases.

Let

3

Ds = {(o,7:0° =72 =070 =1)

denote the dihedral group of order 6. Let L/K be a Galois
extension with group Ds.

L/K is the splitting field of some irreducible cubic
p(X) = X3 + gX + r over K with discriminant D = —4q> — 27r2,
not a square in K.

By [Ro15, Proposition A-5.69], L7 = K(v/D).



By [Ro15, Theorem A-1.2], the roots of p(X) are

s+t sCHtc? s+t

with s = {/(—r +VR)/2, t = —q/(3s), R = r? 4+ (4/27)q>, and ¢

a primitive 3rd root of unity. Note that st = —q/3 and
S+t =—r.

The Galois action on L is defined by
o(s+1) = sC+tC%,  o(sC+1t¢?) =sC2+t¢, o(sC3+1t¢) = s+t,

T(s+t)=s+t, T(sCH+tC?) =sC3+t¢, T(sC?>+1t¢) = sC+tC>.



Let B=s+t, v=28—0c(B)—c%B) and
w =242 — o(5?) — o?(8?).

Lemma 6.1.

(i) v =3s+ 3t,

(i) w = 3s? + 3t2,

(iii) o(s? + t2) = s2¢? + t2¢.
(iv) o(s?¢ + t2¢?) = s? + t2.



By [CR81, Example (7.39)],

K[D3] =2 K x K x Maty(K),
and by character theory,

Hy = K x K x Mat,(D),

where 1 < n <2 and D is a division algebra over K.

We claim that Mat,(D) = Maty(K).



Let M be the subalgebra of Hy corresponding to the component
Mat,(D) in the decomposition (2).

In order to show that M = Mat,(K), we first compute a K-basis
for M.

By [Ch00, Example 6.12],

Hy ={ap + a0 + 7(31)02 + byt + o(bg)T0 + 02(b0)7'02 :

a € K,a; € L<U>,b0 S L<T>}.



Let a1 = go + g1V/D be a typical element of L{?) = K(v/D),
q0, g1 € K. Note that 7(a1) = qo — CI1\/5.

Let by = ro + ri 8 + rf3? a typical element of L) = K(5),
ro, i, n € K.



Proposition 6.2. A K-basis for M is
{@=0-0%/3,VD(0 - %), (v7 + o(v)ro + a%(v)r0?)/3,

(wr + o(w)ro + o?(w)r0?)/3} .

Proof. The element e3 = (2 — 0 — 02)/3 is the orthogonal
idempotent corresponding to the component M = Mat,(D) in the
decomposition (2).

By Childs’ result, Hy consists of elements of the form
h = ag+ ai0 + 7(a1)0? + bot + o(bg)T0 + 0%(bo) 702,

where ag € K, a1 € K(v/D), and by € K(). Thus, the product
esh is a typical element of M, which can be written as a linear
combination of the claimed basis. 0



We want to convert the basis of Proposition 6.2 into a
quaternionic K-basis. We assume g # 0.

Lemma 6.3. A K-basis for M is {1, U, V, W} where
1=02—-0-0%)/3, U=vVD(oc—c?),

V = (wr + o(w)ro + o?(w)T0?)/3, and

W = UV = VD(o — 0?)(wr + o(w)T0o + 0%(w)T0?)/3.

Proof. We have

VD(o — o?)(wr + a(w)To + o?(w)T0?)/3
- N7+ (0?(w) —w)To+ (w—o(w))Te?)/3)
= VD((o(w) — a?(W))T + o(o(w) — o?(w))To
+0?(a(w) — o?(w))7r0?)/3).



And, v/D((o(w) — %(w))

= (s° = )¢ = A1 = )*(B0(8%) —30%(5%))
= 9(s° = )20 +1)(s* — £7)(¢* <)

= 27(s® — t3)(s® — t?)

= 27(s® + t°) — ¢*v

= —9rw — 2q2v.

And so, the matrix that converts the basis of Proposition 6.2 to
the set {1, U, V, W} is invertible, hence {1, U, V, W} is a basis.



In fact, the K-basis {1, U, V, W} is quaternionic. We need some
lemmas.

Let TrL<T>/K L7 — K and TrL<M>/K - L497) — K and denote the
trace maps.

Lemma 6.4. TrL<T>/K(W2) = —2Tr; (or)  (wo (w)).

Proof. We have Tr () ,c(w) = 0. Thus

0 = (w+o(w)+o*(w))

= w2 +o(w?) + ?(W?) + 2wo(w) + 20(w)o?(w) 4+ 2wa?(w)
= TrL<T>/K(W2)+2TrL<UT>/K(WU(W))'



Lemma 6.5. Tr; (o) /x(wo(w)) = —3q2.

Proof. We have
Tryor) jc(wo(w)) = TrL<m>/Q(9(s2 + t2)(s2¢% + t%())

= —3¢%



Lemma 6.6.
((wr +o(w)ro +0%(w)ro?) 312 = ¢*(2 — 0 — 02)/3

Proof.
((wr + o(w)To + o?(w)70?)/3)?

_ % (w? + o(w?) + o3(w?))
+ é(wg(w) + o(w)o*(w) + wo?(w))o
+ %(WU(W) + o(w)o?(w) + wo?(w))o?

_ —%TI"UUT)/K(WU(W)) + éTrLW/K(W”(W))"
+ g Tron (wo(w)o?

_ —%Trufm k(wo(w)(2 =0 —0°)/3

= ¢*(2—0—-0?)/3



Proposition 6.7. A quaternionic K-basis for M is {1, U,V , W}
where 1 = (2 — 0 — 0?)/3, U = V/D(o — o?),

V = (wr + o(w)ro + o?(w)T0?)/3, and

W = UV = VD(o — o?)(wr + o(w)T0o + 0?(w)T0?)/3.

Proof. The set {1, U, V, W} is linearly independent over K hence
is a K-basis for M. Now, U? = —3D, V2 = q2, and UV = —VU.
Thus M = (—3D, ¢%)k.

O



Now we can show that M = Mat,(K) and hence Hy = K[Dj3] as
K-algebras.

Proposition 6.8. M = Maty(K).

Proof. By [Col9, (4)], M =2 (—3D, ¢?) = (-3D,1)k. Thus by
[Col9, Theorem 4.3] M = Maty(K).



7. Matrix Units in Hy: the G = D3 Case

By Proposition 6.8, M = Maty(K). We compute the matrix units
in M.

By [Co19, Theorem 4.3], there is a K-algebra isomorphism
¢ : M — Maty(K) given as

to o 1) v (o o) viem o 5)

0 -1
uUv/q— (—37) 0 >



Thus,

1,1 01y 1, 1 00
2U_2UV/"H<0 o)’ 21_2v/qH<o 1)’

1, 1 10 00
21+2V/qH><O 0>, ~6D U—@UV/ H(l 0)-
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