Algebraic Structure of the Canonical Non-classical Hopf Algebra

Robert G. Underwood
Department of Mathematics and Computer Science
Auburn University at Montgomery
Montgomery, Alabama

June 12, 2019

1. Introduction

Let K be a field containing \mathbb{Q}, and let L / K be a Galois extension with non-abelian group G.

Then L / K admits both a classical and canonical non-classical Hopf-Galois structure via the Hopf algebras $K[G]$ and H_{λ}, respectively.

By an (unpublished) theorem of C. Greither, $K[G] \cong H_{\lambda}$ as K-algebras.

Various proofs of Greither's result have been found in certain cases.

For instance, S. Taylor and P. J. Truman [TT19] have shown that $K[G] \cong H_{\lambda}$ when G is the quaternion group Q_{8}.
U. has shown that $K[G] \cong H_{\lambda}$ for the cases $G=D_{4}$ and $G=D_{3}$.

In this talk we review these results; we examine the D_{3} case in detail to find explicit formulas for the matrix units in H_{λ}.

2. Hopf Galois theory

We review some of the basic notions of Hopf-Galois theory.
Let L be a finite extension of a field K.

Let H be a finite dimensional, cocommutative K-Hopf algebra with comultiplication $\Delta: H \rightarrow H \otimes_{R} H$, counit $\varepsilon: H \rightarrow K$, and coinverse $S: H \rightarrow H$.

Suppose there is a K-linear action of H on L that satisfies

$$
\begin{aligned}
h \cdot(x y) & =\sum_{(h)}\left(h_{(1)} \cdot x\right)\left(h_{(2)} \cdot y\right) \\
h \cdot 1 & =\varepsilon(h) 1
\end{aligned}
$$

for all $h \in H, x, y \in L$, where $\Delta(h)=\sum_{(h)} h_{(1)} \otimes h_{(2)}$ is Sweedler notation.

Suppose also, that the K-linear map

$$
j: L \otimes_{K} H \rightarrow \operatorname{End}_{K}(L), j(x \otimes h)(y)=x(h \cdot y)
$$

is an isomorphism of vector spaces over K. Then H together with this action provides a Hopf-Galois structure on L / K.

Example 2.1. Suppose L / K is Galois with Galois group G. Let $H=K[G]$ be the group algebra, which is a Hopf algebra via $\Delta(g)=g \otimes g, \varepsilon(g)=1, \sigma(g)=g^{-1}$, for all $g \in G$. The action

$$
\left(\sum r_{g} g\right) \cdot x=\sum r_{g}(g(x))
$$

provides the "usual" Hopf-Galois structure on L / K which we call the classical Hopf-Galois structure.

In the separable case C. Greither and B. Pareigis [GP87] have provided a complete classification of such structures.

Let L / K be separable with normal closure E. Let $G=\operatorname{Gal}(E / K)$, $G^{\prime}=\operatorname{Gal}(E / L)$, and $X=G / G^{\prime}$. Denote by $\operatorname{Perm}(X)$ the group of permutations of X.

A subgroup $N \leq \operatorname{Perm}(X)$ is regular if $|N|=|X|$ and $\eta\left[x G^{\prime}\right] \neq x G^{\prime}$ for all $\eta \neq 1_{N}, x G^{\prime} \in X$.

Let $\lambda: G \rightarrow \operatorname{Perm}(X), \lambda(g)\left(x G^{\prime}\right)=g x G^{\prime}$, denote the left translation map. A subgroup $N \leq \operatorname{Perm}(X)$ is normalized by $\lambda(G) \leq \operatorname{Perm}(X)$ if $\lambda(G)$ is contained in the normalizer of N in Perm (X).

Theorem 2.2. (Greither-Pareigis) Let L / K be a finite separable extension. There is a one-to-one correspondence between Hopf Galois structures on L / K and regular subgroups of $\operatorname{Perm}(X)$ that are normalized by $\lambda(G)$.

One direction of this correspondence works by Galois descent: Let N be a regular subgroup normalized by $\lambda(G)$. Then G acts on the group algebra $E[N]$ through the Galois action on E and conjugation by $\lambda(G)$ on N, i.e.,

$$
g(x \eta)=g(x)\left(\lambda(g) \eta \lambda\left(g^{-1}\right)\right), g \in G, x \in E, \eta \in N
$$

For simplicity, we will denote the conjugation action of $\lambda(g) \in \lambda(G)$ on $\eta \in N$ by ${ }^{g} \eta$.

We then define

$$
H=(E[N])^{G}=\{x \in E[N]: g(x)=x, \forall g \in G\}
$$

The action of H on L / K is thus

$$
\left(\sum_{\eta \in N} r_{\eta} \eta\right) \cdot x=\sum_{\eta \in N} r_{\eta} \eta^{-1}\left[1_{G}\right](x)
$$

see [Ch11, Proposition 1].
The fixed ring H is an n-dimensional K-Hopf algebra, $n=[L: K]$, and L / K has a Hopf Galois structure via H [GP87, p. 248, proof of $3.1(\mathrm{~b}) \Longrightarrow(\mathrm{a})$], [Ch00, Theorem 6.8, pp. 52-54].

By [GP87, p. 249, proof of 3.1, $(\mathrm{a}) \Longrightarrow(\mathrm{b})$],

$$
E \otimes_{K} H \cong E \otimes_{K} K[N] \cong E[N]
$$

as E-Hopf algebras, that is, H is an E-form of $K[N]$.

Theorem 2.2 can be applied to the case where L / K is Galois with group G (thus, $E=L, G^{\prime}=1_{G}, G / G^{\prime}=G$). In this case the Hopf Galois structures on L / K correspond to regular subgroups of $\operatorname{Perm}(G)$ normalized by $\lambda(G)$, where $\lambda: G \rightarrow \operatorname{Perm}(G)$, $\lambda(g)(h)=g h$, is the left regular representation.

Example 2.3. Suppose L / K is a Galois extension, $G=\operatorname{Gal}(L / K)$. Let $\rho: G \rightarrow \operatorname{Perm}(G)$ be the right regular representation defined as $\rho(g)(h)=h g^{-1}$ for $g, h \in G$. Then $\rho(G)$ is a regular subgroup normalized by $\lambda(G)$, since $\lambda(g) \rho(h) \lambda\left(g^{-1}\right)=\rho(h)$ for all $g, h \in G$; N corresponds to a Hopf-Galois structure with K-Hopf algebra $H=L[\rho(G)]^{G}=K[G]$, the usual group ring Hopf algebra with its usual action on L. Consequently, $\rho(G)$ corresponds to the classical Hopf Galois structure.

Example 2.4. Again, suppose L / K is Galois with group G. Let $N=\lambda(G)$. Then N is a regular subgroup of $\operatorname{Perm}(G)$ which is normalized by $\lambda(G)$, and $N=\rho(G)$ if and only if N abelian. We denote the corresponding Hopf algebra by H_{λ}. If G is non-abelian, then $\lambda(G)$ corresponds to the canonical non-classical Hopf-Galois structure.

3. Isomorphism Classes

It is of interest to determine how $K[G]$ and H_{λ} fall into K-Hopf algebra and K-algebra isomorphism classes. We have:

Theorem 3.1. (Koch, Kohl, Truman, U. [KKTU19]) Assume that G is non-abelian. Then $H_{\lambda} \neq K[G]$ as K-Hopf algebras.

Proof. Over $L, K[G]$ and H_{λ} are isomorphic to $L[G]$ as Hopf algebras, thus their duals $K[G]^{*}$ and H_{λ}^{*} are finite dimensional as algebras over K and separable (as defined in [Wa79, 6.4, page 47]). Using the classification of such K-algebras [Wa79, 6.4, Theorem], we conclude that $K[G]^{*}$ and H_{λ}^{*} are not isomorphic as $K-H o p f$ algebras, and so neither are $K[G]$ and H_{λ}. In fact, by $[\mathrm{Wa79}, 6.3$, Theorem], $K[G]^{*}$ and H_{λ}^{*} are not isomorphic as K-algebras, and consequently, $K[G]$ and H_{λ} are not isomorphic as K-coalgebras. \square

Here is an another proof for Theorem 3.1.
Proof. By [Ko15, Corollary 1.3], the group-like elements of H_{λ} are computed as $G\left(H_{\lambda}\right)=\lambda(G) \cap \rho(G)$, which cannot be all of $\rho(G)$ since G is non-abelian. Thus $H_{\lambda} \not \neq K[G]$ as K-Hopf algebras.

For the moment, we fix G, and the base field K, and allow L / K to vary.

Proposition 3.2. Let L / K and L^{\prime} / K be Galois extensions with non-abelian group G with $L \neq L^{\prime}$. Let H_{λ} and $H_{\lambda^{\prime}}$ be the corresponding canonical non-classical Hopf algebras. Let E be the compositum of L, L', with Galois group Г. Assume that $E^{Z(\Gamma)} \nsubseteq L \cap L^{\prime}$, where $Z(\Gamma)$ denotes the center of Γ. Then $H_{\lambda} \neq H_{\lambda^{\prime}}$ as K-Hopf algebras.

Proof. By way of contradiction, assume that $H_{\lambda} \cong H_{\lambda^{\prime}}$ as K-Hopf algebras. Then

$$
L \otimes_{K} H_{\lambda} \cong L[\lambda(G)] \cong L[G] \cong L \otimes_{K} H_{\lambda^{\prime}}
$$

as L-Hopf algebras. Thus $L \otimes_{K} H_{\lambda^{\prime}}$ has exactly $|G|$ group-like elements.

Now tensoring over L with E yields

$$
E \otimes_{L} L[G] \cong E \otimes_{L}\left(L \otimes_{K} H_{\lambda^{\prime}}\right) \cong E[G] .
$$

So, the group-likes in $L \otimes_{K} H_{\lambda^{\prime}}$ are the group elements in G. This is a contradiction since $E^{Z(\Gamma)} \nsubseteq L \cap L^{\prime}$.

We next consider K-algebra structure.

Theorem 3.3. (Greither) $H_{\lambda} \cong K[G]$ as K-algebras.
Proof. (Sketch.)
Step 1. Obtain the Wedderburn-Artin decomposition of $K[G]$, thus:

$$
K[G] \cong A_{1} \times A_{2} \times \cdots \times A_{m}
$$

where $A_{i}=\operatorname{Mat}_{n_{i}}\left(E_{i}\right)$ for division rings E_{i}.
Step 2. Show that the action of G on $L[G]$ restricts to an action on the components $L \otimes A_{i}$ of $L[G] \cong L \otimes_{K} K[G]$, and hence each component $L \otimes A_{i}$ descends to a component S_{i} in the Wedderburn-Artin decomposition of H_{λ}; (supressing subscripts) S is an L-form of A.

Step 3. L-forms of A are classified by the pointed set $H^{1}\left(G, \operatorname{Aut}\left(L \otimes_{K} A\right)\right)$. Let $[\hat{f}]$ be the class corresponding to the class of S.

Step 4. There exists a map in cohomology

$$
\Psi: H^{1}\left(G, G L_{n}\left(L \otimes_{K} E\right)\right) \rightarrow H^{1}\left(G, \operatorname{Inn}\left(L \otimes_{K} A\right)\right)
$$

with $[\hat{f}] \in H^{1}\left(G, \operatorname{Inn}\left(L \otimes_{K} A\right)\right)$. Moreover, there exists a class $[\hat{q}] \in H^{1}\left(G, G L_{n}\left(L \otimes_{K} E\right)\right)$ with $\Psi([\hat{q}])=[\hat{f}]$.

Step 5. By Hilbert's Theorem 90 (or its generalization) $H^{1}\left(G, G L_{n}\left(L \otimes_{K} E\right)\right)$ is trivial, hence $[\hat{f}]$ is trivial, so $S \cong A$ as K-algebras, thus $H_{\lambda} \cong K[G]$ as K-algebras.

For details in the case $G=D_{p}, p$ an odd prime, see [KKTU19, Theorem 4].

Recently, P. J. Truman has given the following generalization.
Theorem 3.4. (Truman) Let N be given and let N^{\prime} be the centralizer of N in $\operatorname{Perm}(G)$. Then $(L[N])^{G} \cong\left(L\left[N^{\prime}\right]\right)^{G}$ as K-algebras.

4. Greither's Theorem for $G=Q_{8}$

Let

$$
Q_{8}=\left\langle\sigma, \tau: \sigma^{4}=\tau^{4}=1, \sigma^{2}=\tau^{2}, \sigma \tau=\tau \sigma^{3}\right\rangle
$$

denote the quaternion group. Let L / K be a Galois extension with group Q_{8}.

Then L / K has a unique biquadratic extension $K(\alpha, \beta)$ with $\alpha^{2}=a \in K, \beta^{2}=b \in K$ corresponding to the unique subgroup $\left\langle\sigma^{2}\right\rangle$ of order 2.

For $x, y \in K^{\times}$, let $(x, y)_{K}$ denote the quaternion algebra with K-basis $\{1, u, v, w\}$, satisfying the relations $u^{2}=x, v^{2}=y$, $u v=w, v u=-w$.

We have the following result due to S. Taylor and P. J. Truman [NYJM19]

Proposition 4.1. (Taylor and Truman)

$$
K\left[Q_{8}\right] \cong K \times K \times K \times K \times(-1,-1)_{K},
$$

and

$$
H_{\lambda} \cong K \times K \times K \times K \times(-a,-b)_{K} .
$$

What is not immediate is whether $(-1,-1)_{K} \cong(-a,-b)_{K}$ as K-algebras.

Proposition 4.2. (Taylor and Truman) $(-1,-1)_{K} \cong(-a,-b)_{K}$ as K-algebras.

Consequently, $H_{\lambda} \cong K\left[Q_{8}\right]$ as K-algebras.
In the decomposition

$$
K\left[Q_{8}\right] \cong K \times K \times K \times K \times(-1,-1)_{K},
$$

the 4-dimensional K-algebra $(-1,-1)_{K}$ could either be a division ring or isomorphic to $\mathrm{Mat}_{2}(K)$.

Proposition 4.3. If K is real, then $(-1,-1)_{K}$ is a division ring.
Proof. Let $q=a+b u+c v+d w \in(-1,-1)_{K}$ for $a, b, c, d \in K$ not all 0 . Since K is real, one can compute the inverse

$$
q^{-1}=(a-b u-c v-d w) /\left(a^{2}+b^{2}+c^{2}+d^{2}\right)
$$

Proposition 4.4. If K contains i then $(-1,-1)_{K} \cong \operatorname{Mat}_{2}(K)$.
Proof. The map $\phi:(-1,-1)_{K} \rightarrow \operatorname{Mat}_{2}(K)$ defined as
$1 \mapsto\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right), u \mapsto\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right), v \mapsto\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), w \mapsto\left(\begin{array}{cc}0 & i \\ -i & 0\end{array}\right)$
is an isomorphism of K-algebras. See [Ro17, Example C-2.114].

5. Greither's Theorem for $G=D_{4}$

Our methods here share similarities with the Q_{8} case.

Let

$$
D_{4}=\left\langle\sigma, \tau: \sigma^{4}=\tau^{2}=\sigma \tau \sigma \tau=1\right\rangle
$$

denote the dihedral group of order 8 . Let L / K be a Galois extension with group D_{4}.

Then L / K has a unique biquadratic extension $K(\alpha, \beta)$ with $\alpha^{2}=a \in K, \beta^{2}=b \in K$ corresponding to the subgroup $\left\langle\sigma^{2}\right\rangle$ of order 2.

We have $L^{\left\langle\sigma^{2}\right\rangle}=K(\alpha, \beta)$ with $L^{\left\langle\sigma^{2}, \tau\right\rangle}=K(\beta), L^{\langle\sigma\rangle}=K(\alpha)$ and $L^{\left\langle\sigma^{2}, \tau \sigma^{3}\right\rangle}=K(\alpha \beta)$.

The lattice of fixed fields is:

By [CR81, Example 7.39]

$$
K\left[D_{4}\right] \cong K \times K \times K \times K \times \operatorname{Mat}_{2}(K) .
$$

And by character theory,

$$
H_{\lambda} \cong K \times K \times K \times K \times \operatorname{Mat}_{n}(D)
$$

where $1 \leq n \leq 2$ and D is some division algebra over K.

We proceed to compute the component $\operatorname{Mat}_{n}(D)$. (We intend to show that $\operatorname{Mat}_{n}(D) \cong \operatorname{Mat}_{2}(K)$.)

We begin by characterizing the elements in H_{λ}.

Proposition 5.1. Let L / K be a Galois extension with group D_{4}.

Then H_{λ} consists of elements of the form
$h=a_{0}+a_{1} \sigma+a_{2} \sigma^{2}+\tau\left(a_{1}\right) \sigma^{3}+b_{0} \tau+b_{1} \tau \sigma+\sigma\left(b_{0}\right) \tau \sigma^{2}+\sigma\left(b_{1}\right) \tau \sigma^{3}$,
where $a_{0}, a_{2} \in K, a_{1} \in L^{\langle\sigma\rangle}, b_{0} \in L^{\left\langle\sigma^{2}, \tau\right\rangle}$, and $b_{1} \in L^{\left\langle\sigma^{2}, \tau \sigma^{3}\right\rangle}$.
Proof. Following [Ch00, Example 6.12], let

$$
x=a_{0}+a_{1} \sigma+a_{2} \sigma^{2}+a_{3} \sigma^{3}+b_{0} \tau+b_{1} \tau \sigma+b_{2} \tau \sigma^{2}+b_{3} \tau \sigma^{3}
$$

be an element of $L\left[D_{4}\right]$ for some $a_{0}, a_{1}, a_{2}, a_{3}, b_{0}, b_{1}, b_{2}, b_{3} \in L$. Then the elements in H_{λ} are precisely those x for which $\tau(x)=x$ and $\sigma(x)=x$.

Write $b_{0}=b_{0,1}+b_{0,2} \beta, a_{1}=a_{1,1}+a_{1,2} \alpha$, and $b_{1}=b_{1,1}+b_{1,2} \alpha \beta$ for some $b_{0,1}, b_{0,2}, a_{1,1}, a_{1,2}, b_{1,1}, b_{1,2} \in K$.

Then $\sigma\left(b_{0}\right)=b_{0,1}-b_{0,2} \beta, \sigma\left(b_{1}\right)=b_{1,1}-b_{1,2} \alpha \beta$, and $\tau\left(a_{1}\right)=a_{1,1}-a_{1,2} \alpha$.

Let M be the subalgebra of H_{λ} corresponding to the component $\operatorname{Mat}_{n}(D)$ in the decomposition of H_{λ}.

Proposition 5.2. M has K-basis

$$
\left\{\left(1-\sigma^{2}\right) / 2, \alpha\left(\sigma-\sigma^{3}\right), \beta\left(\tau-\tau \sigma^{2}\right), \alpha \beta\left(\tau \sigma-\tau \sigma^{3}\right)\right\}
$$

Proof. The idempotents corresponding to the 4 copies of K in the decomposition of H_{λ} are $e_{i}=\frac{1}{8} \sum_{s \in D_{4}} \chi_{i}\left(s^{-1}\right) s, 1 \leq i \leq 4$, where χ_{i} are the characters of the 4 1-dimensional irreducible representations of D_{4} (each e_{i} is in $L D_{4}$ and is fixed by D_{4}, hence $e_{i} \in H_{\lambda}$).

The idempotent corresponding to the component $\operatorname{Mat}_{n}(D)$ is

$$
e=1-\sum_{i=1}^{4} e_{i}=\frac{1-\sigma^{2}}{2}
$$

By Proposition 5.1, a typical element of H_{λ} appears as
$h=a_{0}+a_{1} \sigma+a_{2} \sigma^{2}+\tau\left(a_{1}\right) \sigma^{3}+b_{0} \tau+b_{1} \tau \sigma+\sigma\left(b_{0}\right) \tau \sigma^{2}+\sigma\left(b_{1}\right) \tau \sigma^{3}$, where $a_{0}, a_{2} \in K, a_{1} \in L^{\langle\sigma\rangle}, b_{0} \in L^{\left\langle\sigma^{2}, \tau\right\rangle}$, and $b_{1} \in L^{\left\langle\sigma^{2}, \tau \sigma^{3}\right\rangle}$.

And so, a typical element of M is

$$
\begin{aligned}
e h= & \left(\frac{1-\sigma^{2}}{2}\right)\left(a_{0}+a_{1} \sigma+a_{2} \sigma^{2}+\tau\left(a_{1}\right) \sigma^{3}+b_{0} \tau+b_{1} \tau \sigma\right. \\
& \left.+\sigma\left(b_{0}\right) \tau \sigma^{2}+\sigma\left(b_{1}\right) \tau \sigma^{3}\right) \\
= & q\left(\frac{1-\sigma^{2}}{2}\right)+a_{1,2} \alpha\left(\sigma-\sigma^{3}\right)+b_{0,2} \beta\left(\tau-\tau \sigma^{2}\right) \\
& +b_{1,2} \alpha \beta\left(\tau \sigma-\tau \sigma^{3}\right)
\end{aligned}
$$

for $q, a_{1,2}, b_{0,2}, b_{1,2} \in K$. Thus

$$
\left\{\left(1-\sigma^{2}\right) / 2, \alpha\left(\sigma-\sigma^{3}\right), \beta\left(\tau-\tau \sigma^{2}\right), \alpha \beta\left(\tau \sigma-\tau \sigma^{3}\right)\right\}
$$

is a K-basis for M.

Let $1=\left(1-\sigma^{2}\right) / 2, X=\alpha\left(\sigma-\sigma^{3}\right), Y=\beta\left(\tau-\tau \sigma^{2}\right)$, and $Z=\alpha \beta\left(\tau \sigma-\tau \sigma^{3}\right)$.

Then we have the multiplication table:

	1	X	Y	Z
1	1	X	Y	Z
X	X	$-4 \alpha^{2}$	$-2 Z$	$2 \alpha^{2} Y$
Y	Y	$2 Z$	$4 \beta^{2}$	$2 \beta^{2} X$
Z	Z	$-2 \alpha^{2} Y$	$-2 \beta^{2} X$	$4 \alpha^{2} \beta^{2}$

Thus M is isomorphic as a K-algebra to the quaternion algebra $(-4 a, 4 b)_{K}$ with the quaternionic basis $\{1, X, Y,-2 Z\}$.

Proposition 5.3. $M \cong(-4 a, 4 b)_{K} \cong(b, b a)_{K}$.
Proof. By [Co19, (4), (1), (2)],

$$
M \cong(-4 a, 4 b)_{K} \cong(-a, b)_{K} \cong(b,-a)_{K} \cong(b, b a)_{K}
$$

Proposition 5.4. $M \cong(b, b a)_{K} \cong M a t_{2}(K)$.
Proof. As in [Le01], L / K is a solution to the "Galois theoretical embedding problem" given by $K(\alpha, \beta) / K$ and the short exact sequence

$$
1 \rightarrow\left\langle\sigma^{2}\right\rangle \rightarrow D_{4} \rightarrow C_{2} \times C_{2} \rightarrow 1
$$

So by [Le01, 0.4], ba is a norm in $K(\beta) / K$, that is, there exist $s, t \in K$ so that

$$
\begin{equation*}
s^{2}-b t^{2}=b a \tag{1}
\end{equation*}
$$

Thus by [Co19, Theorem 4.16], $M \cong(b, b a)_{K} \cong M a t_{2}(K)$.

Alternative ending of proof. From (1), we have

$$
\begin{aligned}
& s^{2}=b a+b t^{2}, \quad \text { or } \\
& a s^{2}=a^{2} b+a b t^{2}
\end{aligned}
$$

Then

$$
s X+a Y+t Z
$$

is a non-trivial nilpotent of index 2 in H_{λ}, thus $M \cong \operatorname{Mat}_{2}(K)$.

Our conclusion is that

$$
H_{\lambda} \cong K\left[D_{4}\right] \cong K \times K \times K \times K \times \operatorname{Mat}_{2}(K)
$$

6. Greither's Theorem for $G=D_{3}$

Our method now differs from the Q_{8} and D_{4} cases.

Let

$$
D_{3}=\left\langle\sigma, \tau: \sigma^{3}=\tau^{2}=\sigma \tau \sigma \tau=1\right\rangle
$$

denote the dihedral group of order 6 . Let L / K be a Galois extension with group D_{3}.
L / K is the splitting field of some irreducible cubic $p(X)=X^{3}+q X+r$ over K with discriminant $\mathcal{D}=-4 q^{3}-27 r^{2}$, not a square in K.

By [Ro15, Proposition A-5.69], $L^{\langle\sigma\rangle}=K(\sqrt{\mathcal{D}})$.

By [Ro15, Theorem A-1.2], the roots of $p(X)$ are

$$
s+t, \quad s \zeta+t \zeta^{2}, \quad s \zeta^{2}+t \zeta
$$

with $s=\sqrt[3]{(-r+\sqrt{R}) / 2}, t=-q /(3 s), R=r^{2}+(4 / 27) q^{3}$, and ζ a primitive 3rd root of unity. Note that $s t=-q / 3$ and $s^{3}+t^{3}=-r$.

The Galois action on L is defined by
$\sigma(s+t)=s \zeta+t \zeta^{2}, \quad \sigma\left(s \zeta+t \zeta^{2}\right)=s \zeta^{2}+t \zeta, \quad \sigma\left(s \zeta^{2}+t \zeta\right)=s+t$, $\tau(s+t)=s+t, \quad \tau\left(s \zeta+t \zeta^{2}\right)=s \zeta^{2}+t \zeta, \quad \tau\left(s \zeta^{2}+t \zeta\right)=s \zeta+t \zeta^{2}$.

Let $\beta=s+t, v=2 \beta-\sigma(\beta)-\sigma^{2}(\beta)$, and $w=2 \beta^{2}-\sigma\left(\beta^{2}\right)-\sigma^{2}\left(\beta^{2}\right)$.

Lemma 6.1.
(i) $v=3 s+3 t$,
(ii) $w=3 s^{2}+3 t^{2}$,
(iii) $\sigma\left(s^{2}+t^{2}\right)=s^{2} \zeta^{2}+t^{2} \zeta$.
(iv) $\sigma\left(s^{2} \zeta+t^{2} \zeta^{2}\right)=s^{2}+t^{2}$.

By [CR81, Example (7.39)],

$$
K\left[D_{3}\right] \cong K \times K \times \operatorname{Mat}_{2}(K)
$$

and by character theory,

$$
\begin{equation*}
H_{\lambda} \cong K \times K \times \operatorname{Mat}_{n}(D) \tag{2}
\end{equation*}
$$

where $1 \leq n \leq 2$ and D is a division algebra over K.
We claim that $\operatorname{Mat}_{n}(D) \cong \operatorname{Mat}_{2}(K)$.

Let M be the subalgebra of H_{λ} corresponding to the component $\operatorname{Mat}_{n}(D)$ in the decomposition (2).

In order to show that $M \cong M a t_{2}(K)$, we first compute a K-basis for M.

By [Ch00, Example 6.12],

$$
\begin{gathered}
H_{\lambda}=\left\{a_{0}+a_{1} \sigma+\tau\left(a_{1}\right) \sigma^{2}+b_{0} \tau+\sigma\left(b_{0}\right) \tau \sigma+\sigma^{2}\left(b_{0}\right) \tau \sigma^{2}:\right. \\
\left.a_{0} \in K, a_{1} \in L^{\langle\sigma\rangle}, b_{0} \in L^{\langle\tau\rangle}\right\} .
\end{gathered}
$$

Let $a_{1}=q_{0}+q_{1} \sqrt{\mathcal{D}}$ be a typical element of $L^{\langle\sigma\rangle}=K(\sqrt{\mathcal{D}})$, $q_{0}, q_{1} \in K$. Note that $\tau\left(a_{1}\right)=q_{0}-q_{1} \sqrt{\mathcal{D}}$.

Let $b_{0}=r_{0}+r_{1} \beta+r_{2} \beta^{2}$ a typical element of $L^{\langle\tau\rangle}=K(\beta)$, $r_{0}, r_{1}, r_{2} \in K$.

Proposition 6.2. A K-basis for M is

$$
\begin{gathered}
\left\{\left(2-\sigma-\sigma^{2}\right) / 3, \sqrt{\mathcal{D}}\left(\sigma-\sigma^{2}\right),\left(v \tau+\sigma(v) \tau \sigma+\sigma^{2}(v) \tau \sigma^{2}\right) / 3\right. \\
\left.\left(w \tau+\sigma(w) \tau \sigma+\sigma^{2}(w) \tau \sigma^{2}\right) / 3\right\}
\end{gathered}
$$

Proof. The element $e_{3}=\left(2-\sigma-\sigma^{2}\right) / 3$ is the orthogonal idempotent corresponding to the component $M \cong \operatorname{Mat}_{n}(D)$ in the decomposition (2).

By Childs' result, H_{λ} consists of elements of the form

$$
h=a_{0}+a_{1} \sigma+\tau\left(a_{1}\right) \sigma^{2}+b_{0} \tau+\sigma\left(b_{0}\right) \tau \sigma+\sigma^{2}\left(b_{0}\right) \tau \sigma^{2}
$$

where $a_{0} \in K, a_{1} \in K(\sqrt{\mathcal{D}})$, and $b_{0} \in K(\beta)$. Thus, the product $e_{3} h$ is a typical element of M, which can be written as a linear combination of the claimed basis.

We want to convert the basis of Proposition 6.2 into a quaternionic K-basis. We assume $q \neq 0$.

Lemma 6.3. $A K$-basis for M is $\{1, U, V, W\}$ where $1=\left(2-\sigma-\sigma^{2}\right) / 3, U=\sqrt{\mathcal{D}}\left(\sigma-\sigma^{2}\right)$,
$V=\left(w \tau+\sigma(w) \tau \sigma+\sigma^{2}(w) \tau \sigma^{2}\right) / 3$, and
$W=U V=\sqrt{\mathcal{D}}\left(\sigma-\sigma^{2}\right)\left(w \tau+\sigma(w) \tau \sigma+\sigma^{2}(w) \tau \sigma^{2}\right) / 3$.
Proof. We have

$$
\begin{aligned}
& \sqrt{\mathcal{D}}\left(\sigma-\sigma^{2}\right)\left(w \tau+\sigma(w) \tau \sigma+\sigma^{2}(w) \tau \sigma^{2}\right) / 3 \\
& \left.=\sqrt{\mathcal{D}}\left(\left(\sigma(w)-\sigma^{2}(w)\right) \tau+\left(\sigma^{2}(w)-w\right) \tau \sigma+(w-\sigma(w)) \tau \sigma^{2}\right) / 3\right) \\
& =\sqrt{\mathcal{D}}\left(\left(\left(\sigma(w)-\sigma^{2}(w)\right) \tau+\sigma\left(\sigma(w)-\sigma^{2}(w)\right) \tau \sigma\right.\right. \\
& \left.\left.\quad+\sigma^{2}\left(\sigma(w)-\sigma^{2}(w)\right) \tau \sigma^{2}\right) / 3\right) .
\end{aligned}
$$

And, $\sqrt{\mathcal{D}}\left(\left(\sigma(w)-\sigma^{2}(w)\right)\right.$

$$
\begin{aligned}
& =\left(s^{3}-t^{3}\right)\left(\zeta\left(1-\zeta^{2}\right)(1-\zeta)^{2}\left(3 \sigma\left(\beta^{2}\right)-3 \sigma^{2}\left(\beta^{2}\right)\right)\right. \\
& =9\left(s^{3}-t^{3}\right)(2 \zeta+1)\left(s^{2}-t^{2}\right)\left(\zeta^{2}-\zeta\right) \\
& =27\left(s^{3}-t^{3}\right)\left(s^{2}-t^{2}\right) \\
& =27\left(s^{5}+t^{5}\right)-q^{2} v \\
& =-9 r w-2 q^{2} v .
\end{aligned}
$$

And so, the matrix that converts the basis of Proposition 6.2 to the set $\{1, U, V, W\}$ is invertible, hence $\{1, U, V, W\}$ is a basis.

In fact, the K-basis $\{1, U, V, W\}$ is quaternionic. We need some lemmas.

Let $\operatorname{Tr}_{L^{\langle\tau\rangle} / K}: L^{\langle\tau\rangle} \rightarrow K$ and $\operatorname{Tr}_{L^{\langle\sigma \tau\rangle} / K}: L^{\langle\sigma \tau\rangle} \rightarrow K$ and denote the trace maps.

Lemma 6.4. $\operatorname{Tr}_{L\langle\tau\rangle / K}\left(w^{2}\right)=-2 \operatorname{Tr}_{L\langle\sigma \tau\rangle / K}(w \sigma(w))$.
Proof. We have $\operatorname{Tr}_{L\langle\tau\rangle / K}(w)=0$. Thus

$$
\begin{aligned}
0 & =\left(w+\sigma(w)+\sigma^{2}(w)\right)^{2} \\
& =w^{2}+\sigma\left(w^{2}\right)+\sigma^{2}\left(w^{2}\right)+2 w \sigma(w)+2 \sigma(w) \sigma^{2}(w)+2 w \sigma^{2}(w) \\
& =\operatorname{Tr}_{L\langle\tau\rangle / K}\left(w^{2}\right)+2 \operatorname{Tr}_{L^{\langle\sigma \tau\rangle / K}}(w \sigma(w)) .
\end{aligned}
$$

Lemma 6.5. $\operatorname{Tr}_{L\langle\sigma \tau\rangle / K}(w \sigma(w))=-3 q^{2}$.
Proof. We have

$$
\operatorname{Tr}_{L\langle\sigma \tau\rangle / K}(w \sigma(w))=\operatorname{Tr}_{L\langle\sigma \tau\rangle / \mathbb{Q}}\left(9\left(s^{2}+t^{2}\right)\left(s^{2} \zeta^{2}+t^{2} \zeta\right)\right)
$$

$$
\begin{aligned}
& =9 \operatorname{Tr}_{L\langle\sigma \tau\rangle / \mathbb{Q}}\left(\left(s^{2}+t^{2}\right)\left(s^{2} \zeta^{2}+t^{2} \zeta\right)\right) \\
& =9 \operatorname{Tr}_{L\langle\sigma \tau\rangle / \mathbb{Q}}\left(s^{4} \zeta^{2}+s^{2} t^{2} \zeta+s^{2} t^{2} \zeta^{2}+t^{4} \zeta\right) \\
& =9 \operatorname{Tr}_{L\langle\sigma \tau\rangle / \mathbb{Q}}\left(s^{4} \zeta^{2}+t^{4} \zeta-s^{2} t^{2}\right) \\
& =9 \operatorname{Tr}_{L\langle\sigma \tau\rangle / \mathbb{Q}}\left(s^{4} \zeta^{2}+t^{4} \zeta-\left(q^{2} / 9\right)\right) \\
& =-3 q^{2} .
\end{aligned}
$$

Lemma 6.6.
$\left(\left(w \tau+\sigma(w) \tau \sigma+\sigma^{2}(w) \tau \sigma^{2}\right) / 3\right)^{2}=q^{2}\left(2-\sigma-\sigma^{2}\right) / 3$.
Proof.
$\left(\left(w \tau+\sigma(w) \tau \sigma+\sigma^{2}(w) \tau \sigma^{2}\right) / 3\right)^{2}$

$$
\begin{aligned}
= & \frac{1}{9}\left(w^{2}+\sigma\left(w^{2}\right)+\sigma^{2}\left(w^{2}\right)\right) \\
& +\frac{1}{9}\left(w \sigma(w)+\sigma(w) \sigma^{2}(w)+w \sigma^{2}(w)\right) \sigma \\
& +\frac{1}{9}\left(w \sigma(w)+\sigma(w) \sigma^{2}(w)+w \sigma^{2}(w)\right) \sigma^{2} \\
= & -\frac{2}{9} \operatorname{Tr}_{L\langle\sigma \tau\rangle / K}(w \sigma(w))+\frac{1}{9} \operatorname{Tr}_{L\langle\sigma \tau\rangle / K}(w \sigma(w)) \sigma \\
& +\frac{1}{9} \operatorname{Tr}_{L\langle\sigma \tau\rangle / K}(w \sigma(w)) \sigma^{2} \\
= & -\frac{1}{3} \operatorname{Tr}_{L^{\langle\langle\sigma\rangle} / K}(w \sigma(w))\left(2-\sigma-\sigma^{2}\right) / 3 \\
= & q^{2}\left(2-\sigma-\sigma^{2}\right) / 3
\end{aligned}
$$

Proposition 6.7. A quaternionic K-basis for M is $\{1, U, V, W\}$ where $1=\left(2-\sigma-\sigma^{2}\right) / 3, U=\sqrt{\mathcal{D}}\left(\sigma-\sigma^{2}\right)$,
$V=\left(w \tau+\sigma(w) \tau \sigma+\sigma^{2}(w) \tau \sigma^{2}\right) / 3$, and
$W=U V=\sqrt{\mathcal{D}}\left(\sigma-\sigma^{2}\right)\left(w \tau+\sigma(w) \tau \sigma+\sigma^{2}(w) \tau \sigma^{2}\right) / 3$.
Proof. The set $\{1, U, V, W\}$ is linearly independent over K hence is a K-basis for M. Now, $U^{2}=-3 \mathcal{D}, V^{2}=q^{2}$, and $U V=-V U$. Thus $M \cong\left(-3 \mathcal{D}, q^{2}\right)_{K}$.

Now we can show that $M \cong \operatorname{Mat}_{2}(K)$ and hence $H_{\lambda} \cong K\left[D_{3}\right]$ as K-algebras.

Proposition 6.8. $M \cong M a t_{2}(K)$.
Proof. By [Co19, (4)], $M \cong\left(-3 \mathcal{D}, q^{2}\right) \cong(-3 \mathcal{D}, 1)_{K}$. Thus by [Co19, Theorem 4.3] $M \cong \operatorname{Mat}_{2}(K)$.

7. Matrix Units in H_{λ} : the $G=D_{3}$ Case

By Proposition 6.8, $M \cong M a t_{2}(K)$. We compute the matrix units in M.

By [Co19, Theorem 4.3], there is a K-algebra isomorphism $\phi: M \rightarrow$ Mat $_{2}(K)$ given as
$1 \mapsto\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), U \mapsto\left(\begin{array}{cc}0 & 1 \\ -3 \mathcal{D} & 0\end{array}\right), V / q \mapsto\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$,
$U V / q \mapsto\left(\begin{array}{cc}0 & -1 \\ -3 \mathcal{D} & 0\end{array}\right)$.

Thus,

$$
\begin{gathered}
\frac{1}{2} U-\frac{1}{2} U V / q \mapsto\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad \frac{1}{2} 1-\frac{1}{2} V / q \mapsto\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), \\
\frac{1}{2} 1+\frac{1}{2} V / q \mapsto\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad-\frac{1}{6 \mathcal{D}} U-\frac{1}{6 \mathcal{D}} U V / q \mapsto\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
\end{gathered}
$$

References

[Ch00] L. N. Childs, Taming Wild Extensions: Hopf Algebras and Local Galois Module Theory, AMS: Mathematical Surveys and Monographs, 80, 2000.
[Ch11] L. N. Childs, Hopf Galois structures on Kummer extensions of prime power degree, New York J. Math., Vol 17, (2011), 51-74.
[Co19] K. Conrad, Quaternion algebras, https://kconrad.math.uconn.edu/blurbs/ringtheory /quaternionalg.pdf
[CR81] C. W. Curtis and I. Reiner, Methods of Representation Theory, vol. 1, Wiley, 1981.
[GP87] C. Greither and B. Pareigis, Hopf Galois theory for separable field extensions, J. Algebra, 106, 1987, 239-258.
[KKTU19] A. Koch, T. Kohl, P. J. Truman, R. Underwood. (2019) The Structure of Hopf Algebras Acting on Dihedral Extensions. In: Feldvoss J., Grimley L., Lewis D., Pavelescu A., Pillen C. (eds) Advances in Algebra. SRAC 2017. Springer Proceedings in Mathematics \& Statistics, vol 277. Springer, Cham.
[Ko15], T. Kohl, Grouplike elements as Galois groups on Hopf-Galois extensions, preprint: July 13, 2015.
[Le01], A. Ledet, Embedding problems and equivalence of quadratic forms, Math. Scand., 88, 279-302, 2001.
[Ro15] J. Rotman, Advanced Modern Algebra, Third Ed., Part 1, Amer. Math. Soc., 2015.
[Ro17] J. Rotman, Advanced Modern Algebra, Third Ed., Part 2, Amer. Math. Soc., 2017.
[Se77] J.-P. Serre, Linear Representations of Finite Groups, Springer-Verlag, New York, 1977.
[TT19] S. Taylor, P. J. Truman, The Structure of Hopf algebras giving Hopf-Galois structures on quaternionic extensions, New York J. Math., Vol. 25 (2019), 219-237.
[Wa79] W. C. Waterhouse, Introduction to Affine Group Schemes, Springer-Verlag, New York, 1979.

